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Abstract. A skew morphism of the cyclic additive group Zn is a bijection ϕ on

Zn for which there exists an integer-valued function π : Zn → Z such that ϕ(0) = 0

and ϕ(x + y) = ϕ(x) + ϕπ(x)(y) for all x, y ∈ Zn. A pair of skew morphisms

ϕ : Zn → Zn and ϕ̃ : Zm → Zm are reciprocal if (a) the orders of ϕ and ϕ̃ divide m

and n, respectively, and (b) the associated power functions π and π̃ are determined
by π(x) = ϕ̃x(1) and π̃(y) = ϕy(1). Reciprocal pairs of skew morphisms of cyclic

groups are in one-to-one correspondence with isomorphism classes of regular dessins

with complete bipartite underlying graphs. In this paper we determine all reciprocal
pairs of skew morphisms of the cyclic groups provided that one of them is a group

automorphism.

1. Introduction

A dessin is an embedding i : Γ ↪→ C of a connected 2-coloured bipartite graph
Γ into an orientable closed surface C such that each component of C r i(Γ) is
homeomorphic to the open disc. An automorphism of a dessin is a colouring-
preserving automorphism of the underlying graph which extends to an orientation-
preserving self-homeomorphism of the supporting surface. The automorphism
group of a dessin acts semi-regularly on the edges. In the case where this action
is transitive, and hence regular, the dessin is called regular as well.

A skew morphism of a finite group A is a permutation ϕ on A fixing the identity
element of A and for which there exists an integer-valued function π : A→ Z such
that ϕ(gh) = ϕ(g)ϕπ(g)(h) for all g, h ∈ A. In general, the function π is not
uniquely determined by ϕ. However, if ϕ has order k, then the function π can be
viewed as a function π : A→ Zk. In this case the function π is unique, and it will
be called the power function of ϕ. In particular, if π(ϕ(g)) = π(g), for all g ∈ A,
then the skew morphism ϕ will be called smooth.

Let ϕ and ϕ̃ be skew morphisms of the cyclic additive groups Zn and Zm,
and let π and π̃ be the power functions of ϕ and ϕ̃, respectively. The pair of
skew morphisms ϕ and ϕ̃ are reciprocal if they satisfy the following two numerical
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conditions: (a) the orders of ϕ and ϕ̃ divide m and n, respectively, and (b) π(x) =
ϕ̃x(1) and π̃(y) = ϕy(1) for all x ∈ Zn and y ∈ Zm. It was proved in [8, Theorem 5]
that the isomorphism classes of regular dessins with complete bipartite underlying
graphs Km,n are in one-to-one correspondence with the reciprocal pairs of skew
morphisms ϕ and ϕ̃ of the cyclic groups Zn and Zm. Thus, to classify complete
regular dessins it suffices to determine reciprocal pairs of skew morphisms of cyclic
groups.

In this paper we prove that, in a reciprocal pair of skew morphisms, if one of
the skew morphisms is an automorphism, then the other skew morphism must be
smooth. Employing the theory of smooth skew morphisms all such reciprocal pairs
are completely determined, see Theorem 14.

2. Preliminaries

In this section we summarize some preliminary results concerning skew morphisms,
which will be used throughout the paper.

Let ϕ be a skew morphism of a finite group A, and let π be the power function
of ϕ, and let k be the order of ϕ. A subgroup N of A will be called ϕ-invariant if
ϕ(N) = N . In this case the restriction of ϕ to N is a skew morphism of N . It is well
known that the set Fixϕ = {x ∈ A | ϕ(x) = x} of fixed points of ϕ is a ϕ-invariant
subgroup of A. Another important subgroup is Kerϕ = {x ∈ A | π(x) = 1},
called the kernel of ϕ [11]. Note that, for any g, h ∈ A, π(g) = π(h) if and
only if gh−1 ∈ Kerϕ, so the power function takes exactly |A : Kerϕ| distinct
values. The number |A : Kerϕ| is called the skew type of ϕ. It follows that ϕ is
an automorphism of A if and only if it has skew type 1. A skew morphism which
is not an automorphism will be termed proper.

Recently, Zhang proved that the set

Coreϕ =

k⋂
i=1

ϕi(Kerϕ)

is a ϕ-invariant normal subgroup of A [21], which will be called the core of ϕ.
This is the largest ϕ-invariant subgroup of A contained in the kernel of ϕ. A skew
morphism ϕ of A is kernel-preserving if Kerϕ is a ϕ-invariant subgroup. It follows
that a skew morphism ϕ is kernel-preserving if and only if Kerϕ = Coreϕ, in
which case the restriction of ϕ to Kerϕ is an automorphism of Kerϕ.

Lemma 1 ([11]). Let ϕ be a skew morphism of a finite group A, let π be the
power function of ϕ, and let k be the order of ϕ. Then, for any x, y ∈ A,

ϕ`(xy) = ϕ`(x)ϕσ(x,`)(y) and π(xy) ≡ σ(y, π(x)) (mod k),

where ` is an arbitrary positive integer and σ(x, `) =
∑̀
i=1

π(ϕi−1(x)).
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Lemma 2 ([20]). Let ϕ be a skew morphism of a finite group A=〈g1, g2, . . . , gr〉.
Then

|ϕ| = lcm(|Og1 |, |Og1 |, . . . , |Ogr |),
where Ogi denotes the orbit of ϕ containing gi, i = 1, 2, . . . , r. Moreover, ϕ and π
are completely determined by the action of ϕ and the values of π on the generating
orbits Og1 , Og2 , . . . , Ogr .

Lemma 3 ([23]). Let ϕ be a skew morphism of a finite group A, and let N be a

ϕ-invariant normal subgroup of A. Define ϕ̄ as ϕ̄(ḡ) = ϕ(g) for any ḡ ∈ A/N , then
ϕ̄ is a skew morphism of A/N with power function π̄ determined by π̄(ḡ) ≡ π(g)
(mod m) where m = |ϕ̄|.

Lemma 4 ([4, Lemma 5.1]). Let ϕ be a skew morphism of an abelian group A,
then ϕ is kernel-preserving, and the restriction of ϕ to Kerϕ is an automorphism
of Kerϕ.

The following correspondence between skew morphisms and cyclic complemen-
tary factorisations of finite groups is fundamental.

Lemma 5 ([3]). If G=AC is a factorisation of a finite group G with A∩C=1
and C = 〈c〉, then c induces a skew morphism ϕ of the subgroup A via the com-
muting rule cx = ϕ(x)cπ(x); in particular |ϕ| = |C : CG| where CG = ∩g∈GCg.

Conversely, if ϕ is a skew morphism of a finite group A, then G = LA〈ϕ〉 is
a transitive permutation group on A with LA ∩ 〈ϕ〉 = 1 and 〈ϕ〉 core-free in G,
where LA is the left regular representation of A.

A characterisation of the subgroup Kerϕ can be found in [3], the following
result is an extension.

Proposition 6. Let G=AC be a factorisation of a finite group G with A∩C= 1
and C = 〈c〉, and let ϕ be the skew morphism induced by c via the commuting rule
cx = ϕ(x)cπ(x) for all x ∈ A. Then A ∩ c−1Ac ≤ Kerϕ and AG ≤ Coreϕ.
Moreover, if CG = 1, then A ∩ c−1Ac = Kerϕ and AG = Coreϕ.

Proof. For any x ∈ A ∩ c−1Ac, there is an element y ∈ A such that x = c−1yc,
so cx = yc. Since cx = ϕ(x)cπ(x), we get yc = ϕ(x)cπ(x), and hence π(x) ≡ 1
(mod |c|). Since |ϕ| = |C : CG|, |ϕ| divides |c|. Thus π(x) ≡ 1 (mod |ϕ|), and
hence x ∈ Kerϕ. This proves A ∩ c−1Ac ≤ Kerϕ.

Moreover, since G = AC and C is cyclic, we have

AG =
⋂
g∈G

Ag =

|c|⋂
k=1

Ac
k

.

Thus, for any x ∈ AG and for every integer k, 1 ≤ k ≤ |c|, there exists yk ∈ A such
that ckx = ykc

k. On the other hand, by induction we deduce from the identity
cx = ϕ(x)ππ(x) that ckx = ϕk(x)cσ(x,k) where

σ(x, k) =

k∑
i=1

π(ϕi−1(x)).
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Thus ykc
k = ϕk(x)cσ(x,k). If k = 1 then y1c = ϕ(x)cπ(x), so π(x) ≡ 1 (mod |c|).

Assume π(ϕi(x)) ≡ 1 (mod |c|) for all i ≤ k, then from yk+1ck+1 = ϕk+1cσ(x,k+1)

we deduce that

k + 1 ≡ σ(x, k + 1) =

k+1∑
i=1

π(ϕi−1(x)) = k + π(ϕk(x)) (mod |c|),

so π(ϕk(x)) ≡ 1 (mod |c|). By induction π(ϕk(x)) ≡ 1 (mod |c|) for all non-
negative integer k. Since |ϕ| divides |c|, π(ϕk(x)) ≡ 1 (mod |ϕ|) . Therefore
x ∈ Coreϕ. This proves AG ≤ Coreϕ.

Now assume in addition CG = 1. Then by Lemma 5, |ϕ| = |c|. For any
x ∈ Kerϕ, we have π(x) ≡ 1 (mod |c|), so cx = ϕ(x)cπ(x) = ϕ(x)c. Thus x =
c−1ϕ(x)c ∈ A∩c−1Ac. Therefore Kerϕ = A∩c−1Ac. Similarly, for any x ∈ Coreϕ,
π(ϕk(x)) ≡ 1 (mod |c|) for all nonnegative integers k. Then ckx = ϕk(x)cσ(x,k) =
ϕk(x)ck, so x = c−kϕk(x)ck ∈ AG. Therefore, Coreϕ = AG, as required. �

Since Coreϕ is a ϕ-invariant normal subgroup of A, by Lemma 3, ϕ induces a
skew morphism ϕ̄ of the quotient group A/Coreϕ. Define

Smoothϕ = {x ∈ A | ϕ̄(x̄) = x̄}.
It was proved in [20] that Smoothϕ is a ϕ-invariant subgroup of A containing
Fixϕ. In the extremal case where Smoothϕ = A, the skew morphism ϕ is called
a smooth skew morphism.

Lemma 7 ([20]). A skew morphism ϕ of a finite group A is smooth if and only
if π(ϕ(g)) = π(g) for all g ∈ A.

The most important properties of smooth skew morphisms are summarised as
follows.

Lemma 8 ([20]). Let ϕ be a skew morphism of a finite group A, let π be the
power function of ϕ, and let k be the order of ϕ. If ϕ is smooth, then the following
hold:

(a) ϕ is kernel-preserving,

(b) π : A→ Zk is a group homomorphism from A to the multiplicative group Z∗k
with Kerπ = Kerϕ,

(c) for any ϕ-invariant normal subgroup N of A, the induced skew morphism ϕ̄
on A/N is also smooth, in particular, if N = Kerϕ then ϕ̄ is the identity
permutation,

(d) for any positive integer k, µ = ϕk is a smooth skew morphism,

(e) for any automorphism γ of A, ψ = γ−1ϕγ is a smooth skew morphism of A.

In what follows we turn to skew morphisms of cyclic groups.

Definition 9. Let ϕ : Zn → Zn and ϕ̃ : Zm → Zm be a pair of skew morphisms
of the cyclic additive groups Zn and Zm, and let π and π̃ be the power functions
of ϕ and ϕ̃, respectively. The pair (ϕ, ϕ̃) is reciprocal if they satisfy the following
conditions:
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(a) |ϕ| divides m and |ϕ̃| divides n,

(b) π(x) ≡ ϕ̃x(1) (mod |ϕ|) and π̃(y) ≡ ϕy(1) (mod |ϕ̃|) for all x ∈ Zn and
y ∈ Zm.

The concept of reciprocal pair of skew morphisms was first introduced by Feng
et al as an alternative approach to classify regular dessins with complete bipar-
tite underlying graphs [8]. Note that the above definition is different from but
equivalent to the original one, see [8, Corollary 7]. It was proved that the isomor-
phism classes of regular dessins with complete bipartite underlying graphs Km,n

are in one-to-one correspondence with the reciprocal pairs of skew morphisms of
the cyclic groups Zn and Zm [8, Theorem 5]. It follows that, to classify complete
regular dessins, it suffices to determine reciprocal pairs of skew morphisms of cyclic
groups.

Example 1. For every pair of positive integers m and n, the cyclic groups Zn
and Zm admit at least one reciprocal pair of skew morphisms, that is, the trivial
pair (idn, idm), where idk denotes the identity automorphism of Zk, k = m,n. In
particular, this is the only reciprocal pair of skew morphisms of Zn and Zm if and
only if gcd(m,φ(n)) = gcd(n, φ(m)) = 1 [8]. Note that the corresponding complete
regular dessin is a regular dessin with underlying graph Km,n and automorphism
group Zm × Zn.

Reciprocal pairs of skew morphisms have the following important properties.

Lemma 10 ([8, Corollary 6]). Let ϕ : Zn → Zn and ϕ̃ : Zm → Zm be a recip-
rocal pair of skew morphisms of the cyclic groups Zn and Zm, and let π and π̃ be
the associated power functions, respectively. Then

ϕ(x) ≡
x∑
i=1

π̃(ϕ̃i−1(1)) (mod |ϕ̃|) and ϕ̃(y) ≡
y∑
i=1

π(ϕi−1(1)) (mod |ϕ|).

Lemma 11. Let ϕ : Zn → Zn and ϕ̃ : Zm → Zm be a reciprocal pair of skew
morphisms of the cyclic groups Zn and Zm. Then |Zm : Ker ϕ̃| divides |ϕ| and
|Zn : Kerϕ| divides |ϕ̃|.

Proof. Set k = |Zm : Ker ϕ̃| and ` = |Zn : Kerϕ|, then Ker ϕ̃ = 〈k〉 and Kerϕ =
〈`〉. Since ϕ and ϕ̃ form reciprocal pair, by Definition 9(b), we have

π(|ϕ̃|) = ϕ̃|ϕ̃|(1) ≡ 1 (mod |ϕ|),
and

π̃(|ϕ|) = ϕ|ϕ|(1) ≡ 1 (mod |ϕ̃|),
so |ϕ̃| ∈ Kerϕ and |ϕ| ∈ Ker ϕ̃. Hence, k divides |ϕ̃| and ` divides |ϕ|, as required.

�

Lemma 12. Let ϕ : Zn → Zn and ϕ̃ : Zm → Zm be a reciprocal pair of skew
morphisms of the cyclic groups Zn and Zm. If one of the skew morphisms is
an automorphism, then the other is smooth. In particular, if one of the skew
morphisms is the identity permutation, then the other is an automorphism.
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Proof. Without loss of generality we may suppose that ϕ̃ is an automorphism
of Zm. Then π̃(y) ≡ 1 (mod |ϕ̃|) for any y ∈ Zm. By Lemma 10, ϕ(x) ≡∑x
i=1 π̃(ϕ̃i−1(1)) ≡ x (mod |ϕ̃|) for any x ∈ Zn, and so ϕ(x) − x is a multiple

of |ϕ̃|. By Lemma 11, |ϕ̃| is a multiple of |Zn : Kerϕ|. Thus ϕ(x)−x ∈ Kerϕ, and
consequently, π(ϕ(x)) = π(x). Therefore, by Lemma 7, ϕ is smooth. In particular,
if ϕ̃ = id, then by Definition 9, π(x) ≡ ϕ̃x(1) ≡ 1 (mod |ϕ|) for all x ∈ Zn, so ϕ is
an automorphism of Zn. �

3. Main results

In this section, we determine all reciprocal pairs of skew morphisms, provided that
one of the skew morphisms is an automorphism. We first prove a technical result
as follows.

Lemma 13. Let n, k, r, s, t be positive integers satisfying the following condi-
tions:

(1) k divides n, and r, s ∈ Zn/k,

(2) t has multiplicative order k in Zm, where m is the smallest positive integer

such that r
m∑
i=1

si−1 ≡ 0 (mod n/k),

(3) st−1 ≡ 1 (mod n/k) and s− 1 ≡ r
k∑
i=1

ti−1∑
j=1

sj−1 (mod n/k).

Then the function τ(s, t) =
t∑
i=1

si−1 possesses the following properties:

(a) (s− 1)τ(s, t) ≡ s− 1 (mod n/k),

(b) for any positive integer i, τ(s, ti) ≡ τ(s, t)i (mod n/k),

(c) if k divides i, then rτ(s, t)i ≡ r (mod n/k),

(d) for any positive integers ` and u,

r

k`+u∑
j=1

τ(s, t)j−1 ≡ `(s− 1) + r

u∑
j=1

τ(s, t)j−1 (mod n/k).

Proof. Since (s − 1)τ(s, t) = sτ(s, t) − τ(s, t) = st − 1, by (3), we have (s −
1)τ(s, t) ≡ s− 1 (mod n/k). Moreover, for any positive integer i, we have

τ(s, ti+1) =

t∑
j=1

sj−1 + st
t∑

j=1

sj−1 + · · ·+ st
i+1−t

t∑
j=1

sj−1

= (1 + st + · · ·+ st
i+1−t)

t∑
j=1

sj−1

≡ (1 + s+ s2 + · · ·+ st
i−1)

t∑
j=1

sj−1

≡ τ(s, ti)τ(s, t) (mod n/k).
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Using induction we obtain τ(s, ti) ≡ τ(s, t)i (mod n/k). In particular, if k divides
i, then by (2) we have ti ≡ 1 (mod m), so

rτ(s, t)i ≡ rτ(s, ti) ≡ rτ(s, 1) ≡ r (mod n/k).

Finally, to prove (d), let us denote τ := τ(s, t) for brevity. Then by (a) and (c) we
have

r

k`+u∑
j=1

τ j−1 ≡ r
( k∑
j=1

τ j−1 + τk
k∑
j=1

τ j−1 + · · ·+ τk(`−1)
k∑
j=1

τ j−1
)

+ rτk`
u∑
j=1

τ j−1

(c)
≡ (s− 1)(1 + τk + · · · τk(`−1)) + r

u∑
j=1

τ j−1

(a)
≡ `(s− 1) + r

u∑
j=1

τ j−1 (mod n/k),

as required. �

Theorem 14. Every reciprocal pair of skew morphisms ϕ : Zn → Zn and
ϕ̃ : Zm → Zm of the cyclic groups Zn and Zm such that ϕ̃ is an automorphism
of Zm is given by the formulae

ϕ(x) ≡ x+ rk

x∑
i=1

( t∑
j=1

sj−1
)i−1

(mod n) and ϕ̃(y) ≡ ty (mod m)(1)

with the associated power functions determined by the formulae

π(x) ≡ tx (mod |ϕ|) and π̃(y) ≡ 1 (mod |ϕ̃|),

where k, r, s, t are positive integers satisfying the following conditions:
(a) k is a positive divisor of n, r ∈ Zn/k, s ∈ Z∗n/k and t ∈ Z∗m,

(b) k divides the multiplicative order of t in Zm and the latter divides gcd(rk, n),

(c) if m1 is the smallest positive integer such that r
m1∑
i=1

si−1 ≡ 0 (mod n/k),

then m1 divides m and the multiplicative order of t in Zm1
is equal to k,

(d) s− 1 ≡ r
k∑
i=1

( t∑
j=1

sj−1
)i−1

(mod n/k),

(e) st−1 ≡ 1 (mod n/k).
Conversely, the pair (ϕ, ϕ̃) defined by the formulae (1) is a reciprocal pair of skew
morphisms of Zn and Zm and ϕ̃ is an automorphism, provided that the numerical
conditions (a)–(e) are satisfied.

Proof. First assume that (ϕ, ϕ̃) is a reciprocal pair of skew morphisms of the
cyclic groups Zn and Zm and ϕ̃ is an automorphism, then ϕ̃ : y 7→ ty for some
t ∈ Z∗m. By Lemma 12, the other skew morphism ϕ : Zn → Zn is smooth. Set
k = |Zn : Kerϕ|, then Kerϕ = 〈k〉. By Lemma 8, the induced skew morphism ϕ̄
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of Zm/Kerϕ is the identity permutation and the restriction of ϕ to Kerϕ is an
automorphism of Kerϕ. Thus

ϕ(1) ≡ 1 + rk (mod n) and ϕ(k) ≡ sk (mod n)

for some r ∈ Zn/k and s ∈ Z∗n/k. By the reciprocality (see Definition 9), we have

π(x) ≡ ϕ̃x(1) ≡ tx (mod |ϕ|), x ∈ Zn.

From the identity ϕ(1) ≡ 1 + rk (mod n) we deduce that

ϕ2(1) ≡ ϕ(1 + rk) ≡ ϕ(rk) + ϕ(1) ≡ 1 + rk + rks = 1 + rk(1 + s) (mod n).

Using induction ϕ`(1) ≡ 1+rkτ(s, `) (mod n), where τ(s, `) =
∑̀
j=1

sj−1. Moreover,

ϕ(2) ≡ ϕ(1 + 1) ≡ ϕ(1) + ϕπ(1)(1) ≡ ϕ(1) + ϕt(1) ≡ 2 + rk(1 + τ(s, t)) (mod n).

Using induction again we obtain

ϕ(x) ≡ x+ rk

x∑
i=1

τ(s, ti−1) (mod n), x ∈ Zn.(2)

Combining the above identities we have sk ≡ ϕ(k) ≡ k + rk
∑k
i=1 τ(s, ti−1)

(mod n), which is reduced to

s− 1 ≡ r
k∑
i=1

τ(s, ti−1) (mod n/k).(3)

Furthermore, since ϕ(k) +ϕ(1) ≡ ϕ(k+ 1) ≡ ϕ(1 + k) ≡ ϕ(1) +ϕt(k) (mod n),
we obtain ϕ(k) ≡ ϕt(k) (mod n), which implies that

st−1 ≡ 1 (mod n/k).

Now by Lemma 2, the order m1 = |ϕ| is equal to the length of the orbit O1

of ϕ containing 1. Thus, m1 is equal to the smallest positive integer such that
ϕm1(1) ≡ 1 (mod n), or equivalently, rτ(s,m1) ≡ 0 (mod n/k). The reciprocality
implies that m1 divides m and 1 = π(k) = ϕ̃k(1) = tk (mod m1). It follows
from the minimality of k that the multiplicative order of t in Zm1 is precisely k.
By Lemma 13(b), the formula (2) is reduced to the stated form in (1) and the
congruence (3) is reduced to the stated condition (d). On the other hand, the
order n1 = |ϕ̃| is equal to the multiplicative order of t in Zm. By Lemma 11,
k = |Zn : Kerϕ| divides n1. By the reciprocality, n1 divides n and 1 ≡ π̃(1) =
ϕ(1) ≡ 1 + rk (mod n1), so n1 also divides rk.

Conversely, we verify that the pair (ϕ, ϕ̃) given by (1) is a reciprocal pair of
skew morphisms, provided that the numerical conditions (a)–(e) are satisfied.

First, using properties of the function τ proved in Lemma 13 we derive from (1)
that

ϕi(x) = x+ rkτ(s, i)

x∑
j=1

τ(s, t)j−1.(4)
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Second, it is evident that ϕ̃ is an automorphism of Zm. By (1) we have

ϕ(k) ≡ k + rk

k∑
i=1

τ(s, t)i−1
(d)
≡ sk (mod n).

Since gcd(s, n/k) = 1, the restriction of ϕ to 〈k〉 is an automorphism of 〈k〉.
Moreover, if ϕ(x) ≡ ϕ(y) (mod n) for x ≤ y, then

x+ rk

x∑
i=1

τ(s, t)i−1 ≡ y + rk

y∑
i=1

τ(s, t)i−1 (mod n),

or equivalently,

0 ≡ y − x+ rk

y∑
i=x+1

τ(s, t)i−1 ≡ y − x+ rkτ(s, tx)

y−x∑
i=1

τ(s, t)i−1 (mod n).

Thus x− y ≡ 0 (mod k), and so x− y = ku for some integer u. It follows that

0 ≡ y − x+ rkτ(s, tx)

y−x∑
i=1

τ(s, t)i−1 = ϕt
x

(y − x) = ϕt
x

(uk) = st
x

uk (mod n),

which implies u ≡ 0 (mod n/k), and so x ≡ y (mod n). Therefore, ϕ is a bijection
on Zn. By Lemma 13(d), we have ϕ(0) = 0. Now for any x, y ∈ Zn, by (4), we
have

ϕ(x+ y) ≡ x+ y + rk

x+y∑
i=1

τ(s, t)i−1

≡ (x+ rk

x∑
i=1

τ(s, t)i−1) + (y + rk

x+y∑
i=x+1

τ(s, t)i−1)

≡ (x+ rk

x∑
i=1

τ(s, t)i−1) + (y + rkτ(s, tx)

y∑
i=1

τ(s, t)i−1)

≡ ϕ(x) + ϕπ(x)(y) (mod n).

Therefore, ϕ is a skew morphism of Zn with kernel Kerϕ = 〈k〉.
Finally, by (b) and (c), we have |ϕ| = m1 and |ϕ̃| = n1, and they divide m and

n, respectively. On the other hand,

π(x) = tx = ϕ̃x(1) (mod |ϕ|) and ϕy(1) ≡ 1 + rkτ(y) ≡ 1 ≡ π̃(y) (mod |ϕ̃|).
Consequently, the pair (ϕ, ϕ̃) of skew morphisms fulfills all conditions in Defini-
tion 9, and therefore it is reciprocal, as required. �

Remark 1. From the proof of Theorem 14 we see that the restriction of ϕ to
Kerϕ is the identity automorphism of Kerϕ if and only if s = 1. In this case we
have τ(s, t) = t, and the reciprocal pair of skew morphisms ϕ and ϕ̃ is given by

ϕ(x) = x+ rk

x∑
i=1

ti−1 and ϕ̃(y) = ty,
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where the numerical conditions on the parameters k, r and t are reduced to the
following:

(a) k is a divisor of n, r ∈ Zn/k and t ∈ Z∗m,

(b) k divides the multiplicative order of t in Zm and the latter divides gcd(rk, n),

(c) m1 = n/ gcd(n, rk) divides m and the multiplicative order of t in Zm1
is k,

(d) r
k∑
i=1

ti−1 ≡ 0 (mod n/k).

Corollary 15. Let ϕ : Zn → Zn and ϕ̃ : Zm → Zm be a pair of reciprocal skew
morphisms of the cyclic groups Zn and Zm. If both ϕ and ϕ̃ are automorphisms,
then

ϕ(x) = sx and ϕ̃(y) = ty

for some integers s ∈ Z∗n and t ∈ Z∗m such that
(a) if m1 is the multiplicative order of s in Zn, then m1 divides m and t ≡ 1

(mod m1),

(b) if n1 is the multiplicative order of t in Zm, then n1 divides n and s ≡ 1
(mod n1).

Proof. Note that the skew morphism ϕ of Zn is an automorphism if and only
if Kerϕ = Zn. Thus to prove the corollary we simply put k = 1 in Theorem 14,
and the simplified conditions are obtained by reduction. We leave the verification
to the reader. In what follows we provide a simpler proof which is independent of
Theorem 14.

By hypothesis, both ϕ and ϕ̃ are automorphisms, so there exist integers s ∈ Z∗n
and t ∈ Z∗m such that ϕ(x) = sx and ϕ̃(y) = ty where x ∈ Zn and y ∈ Zm. Let m1

and n1 denote the multiplicative orders of s and t in Zn and Zm, respectively, then
|ϕ| = m1 and |ϕ̃| = n1. Since (ϕ, ϕ̃) is reciprocal, by Definition 9(a), m1 divides
m and n1 divides n. By Definition 9(b) we have 1 ≡ π(1) ≡ ϕ̃(1) ≡ t (mod m1)
and 1 ≡ π̃(1) ≡ ϕ(1) ≡ s (mod n1), as required. �

Remark 2. Kovács and Nedela have shown that every skew morphism of Zm
is an automorphism if and only if m = 4 or gcd(m,φ(m)) = 1 [15, Theorem
6.3]. Thus, if m = 4 or gcd(m,φ(m)) = 1, using Theorem 14 we obtain all pairs
of reciprocal skew morphisms ϕ : Zn → Zn and ϕ̃ : Zm → Zm for any positive
integer n.

Remark 3. Depending on the correspondence between complete regular dessins
and bicyclic groups with two distinguished generators, Hu, Nedela and Wang have
recently classified complete regular dessins with underlying graphs Km,n, where
both m and n are powers of an odd prime p [9]. For example, in the case where
m = 9 and n = 27, up to isomorphism there are precisely 27 complete regular
dessins with underlying graph Km,n. Their automorphism groups split into the
following four families:

(1) 1 regular dessin with automorphism group

G = 〈a, b | a9 = b27 = [a, b] = 1〉 ∼= Z9 × Z27.
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(2) 2 regular dessins with automorphism groups

G = 〈a, b | a9 = b27 = 1, ba = b10〉 ∼= Z27 o10 Z9.

(3) 18 regular dessins with automorphism groups

G = 〈a, b | a9 = b27 = 1, ba = b4〉 ∼= Z27 o4 Z9.

(4) 6 regular dessins with automorphism groups

G = 〈a, b | a9 = b27 = 1, ab = a4〉 ∼= Z9 o4 Z27.

On the other hand, for n = 27 and m = 9, Theorem 14 can be used to determine
the reciprocal pair of skew morphisms ϕ : Z27 → Z27 and ϕ̃ : Z9 → Z9 of the cyclic
groups Z27 and Z9. They split into two families

(a) 15 pairs of automorphisms of the form

ϕ(x) ≡ sx (mod 27) and ϕ̃(y) ≡ ty (mod 9)

where (s, t)=(1, 1), (19, 1), (4, 1), (22, 1), (7, 1), (25, 1), (10, 1), (13, 1), (16, 1),
(1, 4), (1, 7), (19, 4), (10, 4), (19, 7), (10, 7).

(b) 12 pairs of proper (smooth) skew morphisms and automorphisms of the form

ϕ(x) ≡ x+ rk

x∑
i=1

( t∑
j=1

sj−1
)i−1

(mod 27) and ϕ̃(y) ≡ ty (mod 9)

where (k, r, s, t) = (3, 1, 4, 4), (3, 1, 4, 7), (3, 2, 7, 4), (3, 2, 7, 7), (3, 4, 4, 4),
(3, 4, 4, 7), (3, 5, 7, 4), (3, 5, 7, 7), (3, 7, 4, 4), (3, 7, 4, 7), (3, 8, 7, 4), (3, 8, 7, 7).

Thus, the total number of reciprocal pairs of skew morphisms of the cyclic groups
Z27 and Z9 is equal to 15 + 12 = 27, as expected.

4. Smooth skew morphisms of cyclic groups revisited

Under the name of coset-preserving skew morphisms, smooth skew morphisms of
cyclic groups were first classified by Bachratý and Jajcay in [2]. In this section
using the ideas developed in the proof of Theorem 14 we give a new formulation
of their result and present a much simpler proof.

Theorem 16. For n > 1, the proper smooth skew morphisms ϕ of the cyclic
group Zn are in one-to-one correspondence with the quadruples (k, r, s, t) of positive
integers satisfying the following numerical conditions

(a) k > 1 is a proper divisor of n, r ∈ Zn/k and s ∈ Z∗n/k,

(b) the number t has multiplicative order k in Zm, where m is the smallest

positive integer m such that r
m∑
i=1

si−1 ≡ 0 (mod n/k),

(c) s− 1 ≡ r[(
t∑
i=1

si−1)k − 1)]/(
t∑
i=1

si−1 − 1) (mod n/k),

(d) st−1 ≡ 1 (mod n/k).
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Moreover, the skew morphism ϕ of Zn and the associated power function π are
given by

(5) ϕ(x) ≡ x+ rk
τ(s, t)x − 1

τ(s, t)− 1
(mod n) and π(x) ≡ tx (mod m).

Proof. First assume that ϕ is a proper smooth skew morphism of the cyclic
additive group Zn, n > 1. Then Kerϕ = 〈k〉 where k = |Zn : Kerϕ|. In particular,
k is a divisor of n. Since ϕ is a proper skew morphism, Kerϕ < Zn, and hence
k > 1. By Lemma 8, the induced skew morphism ϕ̄ on Zn/Kerϕ is the identity
permutation, the restriction of ϕ to Kerϕ is an automorphism of Kerϕ and the
power function π of ϕ is a group homomorphism of Zn into Z∗|ϕ|. Thus

ϕ(1) ≡ 1 + rk (mod n), ϕ(k) ≡ sk (mod n) and π(x) ≡ tx (mod |ϕ|),
where r ∈ Zn/k, s ∈ Z∗n/k and t ∈ Z∗|ϕ|. As in proof of Theorem 14, from the above

equations it is easy to derive the formulae (5). It follows that

sk ≡ ϕ(k) = k + rk
τ(s, t)k − 1

τ(s, t)− 1
(mod n),

and so

s− 1 ≡ r(τ(s, t)k − 1)

τ(s, t)− 1
(mod n/k).

where τ(s, t) =
t∑
i=1

si−1. Furthermore,

sk + (1 + rk) ≡ ϕ(k + 1) ≡ ϕ(1 + k) ≡ ϕ(1) + ϕt(k) = (1 + rk) + stk (mod n),

which implies that st−1 ≡ 1 (mod n/k).
By Lemma 2, the order m = |ϕ| is equal to the length of the orbit O1 of ϕ

containing 1, so m is equal to the smallest positive integer such that ϕm(1) ≡ 1
(mod n). By (5) we obtain 1+rkτ(s,m)≡1 (mod n), or equivalently, rτ(s,m) ≡ 0
(mod n/k). Since 1 = π(k) ≡ tk (mod m), the minimality of k implies that the
multiplicative order of t is precisely k.

Conversely, we verify that ϕ given by (5) is indeed a proper smooth skew mor-
phism of Zn with Kerϕ = 〈k〉, provided that the numerical conditions (a)–(d) are
fulfilled.

First, using properties of the function τ proved in Lemma 13 we derive from (5)
that

ϕ`(x) ≡ x+ rkτ(s, `)
τ(s, t)x − 1

τ(s, t)− 1
(mod n).(6)

Now suppose that ϕ(x) ≡ ϕ(y) (mod n) where x ≤ y, then by (5) we have

x+ rk
τ(s, t)x − 1

τ(s, t)− 1
≡ y + rk

τ(t)y − 1

τ(s, t)− 1
(mod n),

or equivalently,

0 ≡ (y − x) + rkτ(s, t)x
τ(s, t)y−x − 1

τ(s, t)− 1
(mod n).
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Thus x ≡ y (mod k). Set y − x = ku. The above congruence is reduced to

0 ≡ ϕt
x

(y − x) ≡ ϕt
x

(ku) ≡ st
x

ku (mod n),

so u ≡ 0 (mod n/k) and hence x ≡ y (mod n). Therefore ϕ is a bijection on Zn.
Clearly, ϕ(0) ≡ 0 (mod n).

Next, for any x, y ∈ Zn, by (6) we have

ϕ(x+ y) = x+ y + rk
τ(s, t)x+y − 1

τ(s, t)− 1

= x+ y + rk
(τ(s, t)x − 1) + (τ(s, t)xτ(s, t)y − τ(s, t)x)

τ(s, t)− 1

=
(
x+ rk

τ(s, t)x − 1

τ(s, t)− 1

)
+
(
y + rkτ(s, tx)

τ(s, t)y − 1

τ(s, t)− 1

)
= ϕ(x) + ϕt

x

(y) = ϕ(x) + ϕπ(x)(y).

Therefore ϕ is a skew morphism of Zn. Clearly, Kerϕ = 〈k〉. Since k > 1 is a
proper divisor of n, Kerϕ < Zn, so ϕ is a proper skew morphism. Since

π(ϕ(x)) = π
(
x+ rk

τ(s, t)x − 1

τ(s, t)− 1

)
≡ π(x) (mod m)

for all x ∈ Zn, by Lemma 7, ϕ is smooth. From the proof it is easily seen that
two such skew morphisms are identical if and only if the corresponding parameters
(k, r, s, t) are identical, as required. �
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e-mail : nedela@savbb.sk

N.-E. Wang, School of Mathematics, Physics and Information Science, Zhejiang Ocean Uni-

versity, Zhoushan, Zhejiang 316022 and Key Laboratory of Oceanographic Big Data Mining &
Application of Zhejiang Province, Zhoushan, Zhejiang 316022, China,
e-mail : wangnaer@zjou.edu.cn

K. Yuan, School of Mathematics, Capital Normal University, Beijing 100037, People’s Republic

of China,

e-mail : pktide@163.com


